導(dǎo)數(shù)(Derivative)是微積分中的重要基礎(chǔ)概念。當(dāng)自變量的增量趨于零時,因變量的增量與自變量的增量之商的極限。一個函數(shù)存在導(dǎo)數(shù)時,稱這個函數(shù)可導(dǎo)或者可微分。可導(dǎo)的函數(shù)一定連續(xù)。不連續(xù)的函數(shù)一定不可導(dǎo)。導(dǎo)數(shù)實質(zhì)上就是一個求極限的過程,導(dǎo)數(shù)的四則運算法則來源于極限的四則運算法則。
-x的導(dǎo)數(shù)是-1。
x^n的導(dǎo)數(shù)為n*x^(n-1),
那么x的導(dǎo)數(shù)就是1,
再乘以常數(shù)-1,
所以-x的導(dǎo)數(shù)就是-1。">
2024-10-26
導(dǎo)數(shù)(Derivative)是微積分中的重要基礎(chǔ)概念。當(dāng)自變量的增量趨于零時,因變量的增量與自變量的增量之商的極限。一個函數(shù)存在導(dǎo)數(shù)時,稱這個函數(shù)可導(dǎo)或者可微分。可導(dǎo)的函數(shù)一定連續(xù)。不連續(xù)的函數(shù)一定不可導(dǎo)。導(dǎo)數(shù)實質(zhì)上就是一個求極限的過程,導(dǎo)數(shù)的四則運算法則來源于極限的四則運算法則。