微積分基本定理揭示了什么

回答
瑞文問答

2024-10-05

牛頓-萊布尼茨公式(Newton-Leibniz formula),通常也被稱為微積分基本定理,揭示了定積分與被積函數(shù)的原函數(shù)或者不定積分之間的聯(lián)系。

擴展資料

  它簡化了定積分的計算,只要知道被積函數(shù)的原函數(shù),總可以求出定積分的精確值或一定精度的近似值。牛頓-萊布尼茨公式是聯(lián)系微分學與積分學的橋梁,它是微積分中最基本的公式之一。它證明了微分與積分是可逆運算,同時在理論上標志著微積分完整體系的形成,從此微積分成為一門真正的學科。

  牛頓-萊布尼茨公式簡化了定積分的計算,利用該公式可以計算曲線的弧長,平面曲線圍成的面積以及空間曲面圍成的立體體積,這在實際問題中有廣泛的應(yīng)用,例如計算壩體的填筑方量。

久久综合国产中文字幕,久久免费视频国产版原创视频,欧美日韩亚洲国内综合网香蕉,久久久久久久久久国产精品免费
婷婷四月开心色房播播手机 | 最新国产秒拍福利 | 日本在线视频一二三区 | 亚洲欧美日本国产专区一区 | 在线播放亚洲最大日韩 | 亚洲高清aⅴ日本 |